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The band structure of solids crystallizing in the rocksalt structure has been studied for arbitrary directions 
in reciprocal space using the parametrized tight-binding method. The results are specified in terms of a 
secular determinantal equation containing a minimal set of independent transfer integrals. Account is 
taken of nearest and next-nearest neighbor interactions, using 4.5 4p, and 3d-like orthogonalized basis 
functions for the cation and 2s and Zp-like orthogonalized basis functions for the anion. The analysis 
was then specialized to the (‘lOO\, (1 IO?, and /I I I‘? symmetry directions in reciprocal space. 

After discarding the contributions arising from the 4p states, the 24 remaining transfer integrals were 
evaluated for the case of TiO by optimally fitting the eigenvalues of the various specialized secular deter- 
minantal equations to energy values calculated at selected points of the Brillouin zone by Ern and Switen- 
dick whoemployed the APW procedure. The numerical results show that to the extent to which the APW 
calculation provides an adequate description one cannot generally separate energy contributions asso- 
ciated with one set of atomic states from those contributed by others with compatible symmetry. Thus, 
direct cationxation overlap is competitive with cation-anion interactions. 

Introduction Refs. (9. 10). Basically the desired information 

The metallic properties of transition metal is conveyed in terms of a secular determinantal 

monoxides crystallizing in the rocksalt structure equation of the form 

have been the subject of several recent studies 
(1-7). Therefore, it seemed of interest to investi- 

l(/;,lHl/j’, - X(k)&,.,,/ L 0 (1) 

gate the band structure of this class of materials whose solution indicates for every band how the 
on the basis of the LCAO (tight-binding) theory. energy X changes with wave vector k of the 
We first develop the general theory in terms of a electron. The transfer integrals are defined by 
secular determinantal equation in parametrized 
form. We then specialize to the case of TiO by /;.,I f/i/,;; s 2 e’k’(Rn’PJ’,’ 

evaluating the parameters through optimization 
0 

of the fit to prior calculations based on the APW x ’ d’ru~,.(r)Hu,,(r - R, .. pj,j) (2) 
approach. J 

We begin with a minimal survey ofthe pertinent 
features of the LCAO method which is closely 

where the following symbols have been used: 

patterned after the procedure developed by 
(a) His the Hamiltonian operator for an electron 

Slater and Koster (8); for additional details see 
in the periodic lattice array; (b) lIjl, = Ll,,(r) is an 
orthogonalized atomic orbital; (c) j and j’ 

* The Purdue portion of this work was supported under designate the translationally and/or chemically 
NSF Grant GP 8302 and GP 29221. distinct lattice atoms in an arbitrarily designated 

t Supported by the U.S. Air Force. unit cell; (d) 1 symbolizes the three quantum 
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numbers n, I, m, associated with atom j or j’; 
(e) R, = n,C,a, + &a2 + &a3 is the set of 
lattice vectors, the ni being integers and the &i 
being unit vectors and ai edge lengths coinciding 
with the three edges of the primitive unit cell; 
(f) pjSj is the vector distance between atoms of 
the type j’ and type j in the same primitive unit 
cell; (g) 6 is the Kronecker delta. 

The use of orthogonalized atomic wave 
functions has the virtue of eliminating all overlap 
integrals in (1) in favor of the Kronecker delta. 
These wave functions are formed from the ordin- 
ary atomic orbitals by well-established procedures 
(11) and possess the same symmetry characteri- 
stics as the atomic functions from which they are 
formed (8). 

For rocksalt structures the unit translation 
vectors are given by &ia, = (a/2)@ +J), &a2 = 
(a/2)(j A- I;), C3a3 = (a/2)(& + I), where i, j, ii are 
unit vectors along the three cubic axes of the 
crystal and a is the lattice parameter. Equation (1) 
calls for the evaluation of matrix elements of the 
operator H connecting z$~, to u,,; the latter is 
centered about an atom jat the distance R, + pjCj 
from atomj’. This distance also appears in the 
exponential term in (2). It is useful to introduce 
a vectorR, z (a/2) x (qli + q2j + q&) = R, + pjtj, 
where qi are integers, and to designate the transfer 
integrals by the symbol 

El,j.lj(qlq2qd = J d3rdj4Wlj(r - R,) 

Pa) 

When summing over ql, q2, q3 in Eq. (2a) it is 
convenient to do so with the magnitude )q) fixed 
at successively larger values. For each fixed 191, 
i.e., within each coordination sphere, one ordin- 
arily obtains interrelations among the different E 
parameters, such that Eq. (1) assumes the general 
form 

12, sj,j(kcr)El*,,l,(q) - hal’j’ljl = 0 (3) 

(all I’,!, I,) 

where for each fixed q the exponential terms in 
Eq. (2), interrelated by linear dependences among 
corresponding EICj,lJ(q), have evolved into struc- 
ture factors SjSj(k,q). The important feature of 
tight-binding methodology resides in the fact 
that, within the present approximation scheme 
and for a given type of crystal structure, the 
structure factors are uniquely determined; only 
the E parameters are altered as one proceeds 
from one case to the next. 

Elements of the Secular Determinantal Equation 
for the Rocksalt Structure 

The elements in the secular determinantal 
Eq. (3) will now be determined for the defect-free 
rocksalt structure. Here we must first recognize 
the existence of two distinct types of lattice units, 
namely the cations labeled j’, j= c, and the 
anions labeled j’, j= a. For cationic states it 
seems reasonable to consider the orthogonalized 
atomic orbitals derived from the (n - 1) d, n s, 
and II p wave functions indexed by I,‘, I, = xy, 
xz, yz; x2 - y2, 3z2 - r2 E z2; s,; x,, y,, z,. For 
anionic states the orthogonalized atomic orbitals 
corresponding to the n’s and rip wave functions 
I,‘, I, = s,, x0, y,,, z, are deemed relevant. In the 
present approximation all other states are 
excluded from consideration; this leads to a 
13 x 13 secular determinantal equation. 

In the next step we restrict the summation over 
q to: (a) the individual atoms whose energies in 
the crystal are characterized by the transfer 
integrals Elrjl ,(OOO) ; (b) nearest neighbors whose 
interactions are characterized by parameters such 
as Er,cIa(lOO) or Eltal,( 100) ; and (c) next-nearest 
neighbors with interactions specified by para- 
meters such as ELrcl,( 110) or Ellal,( 110). 

The various entries of the secular determinantal 
equation may now be constructed by evaluating 
the elements &,I Sj,j(k,q) EL,j,,j(q) in (3), subject 
to the restrictions set forth above, and in con- 
formity with standard procedures detailed else- 
where (8-10). The number of transfer integrals 
was confined to a minimal, linearly independent 
set, by examining whether for a given IqI, crystal 
symmetry operations interrelate superficially 
distinct E,,,l,(q) parameters. Interrelations among 
transfer integrals involving d-type basis functions 
are cited in Ref. (IO). 

The nonvanishing entries are summarized in 
Tables I-III, and the symbols are defined in 
Table VII. Despite the simplifications introduced 
so far the results are very complex: the secular 
determinant contains 137 nonvanishing entries 
involving 36 distinct E parameters. Careful 
examination of the tabulations shows that every 
basis function is connected to the 12 others 
through a large number of off-diagonal matrix 
elements. As will become clear from later 
discussion, and as has been detailed in another 
connection (12) one cannot introduce a further 
set of physically reasonable simplifying assump- 
tions to decouple the large secular determinant 
into smaller subsets. 
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TABLE I 

LISTING OF NONVANISHING MATRIX ELEMENTS FOR ENTRIES IN THE SECULAR DETERMINANTAL EQUATION FOR TiO 
PERTAINING TO TITANIUM-TITANIUM INTERACTIONS’ 

Entries 
Notes and scheme for advancement 
of numerical indices i, j, in Ci or S, 

<sclHls,> = r) + 45(C, c2 + Cl c, + c2 Cd - x 
<&lHl&> = 4iBS,(C* + C,) 
<&lHl(Z)> f <SclHlXY> = -4/G s* 
<s,lHlx* - y2> = 2&C,(C, - C,) 
<s,JHIz2) = -26(C, c, + c,c, - 2c1 C,) 
<x~lHlxc) = D + 4EC,(C, + C,) + 4FC, C, - h 
<xc] Hly,> = -4MS, Sz 

<x,lHl(z)) = <x,JHlxy) = 4iS,(KC, + LC,) 
<xc(H((y)> = 4iSs(KC, + LC,) 
<ycJHl(z)) = 4iS,(KC, + LC,) 
<yclHl(x)) = 4iS,(KC, + XI) 
<4Hl(y)) = 4i+WKG + LG) 
<z,lHl(x)) = 4iS,(KC, + LC,) 
(x,lHlx* ~ y*> = 22/3iAS,(C, + C,) + 2iNS,(C2 - C,) 

<y,lHlx* - y*> = -2V%4S2(CI + Cd - 2iNS,(C, - C,) 

<z,lH(X* - y2> = 4iNS,(C, - C,) 
<z,lH~z*> = 4iA&(C, + C,) 
<(z)lHl(z)> = <xylH(xy) = a + 4cC1 C, + 4eC3(CI + C,) - A 
<(z)lHlW> = <xJJlHlxz> = -4&T& s2 

Advance all indices with Ix,> 
Advance all indices with l(z)> 

Advance all indices with Ix,> 
Advance index 1 with <x,1 and index 2 with 
be> ; (xc f Yc). 

<h,lHl(W = 0 

For <x,jHlz*> replace +2~‘3 by -2 and +2 by 
+22/j, respectively 
For <y,IHlz2> replace -265 by -2 and -2 by 
+24 respectively 

Advance all indices with (z) 
Advance S2 with l(y)> and S, with <(z)l; 
((-4 z (YN 
<xylHlx* - y2> = 0 

a Si = sin&a/2); C, 3 cos(k,a/2); subscripts (1,2,3) correspond to (x, y, z); a is the lattice constant. 

Consequently, we were led to examine the 
secular determinantal equation along specific 
directions of high symmetry in reciprocal space. 
Considerable simplification now results because 
some of the structure factors vanish under these 
special conditions, and because many of the re- 
maining entries are duplicated in corresponding 
positions of different rows and columns. One can 
then take suitable linear combinations of these, 
which transform the original basis functions to a 

symmetry-adapted basis set. The transformed 
secular determinantal equation now splits into a 
number of subdeterminants in a manner which 
depends on the choice of the symmetry direction. 
Here, we shall consider the following cases: (a) 
the (100) direction for which k, = k, k,, = k, = 0; 
(b) the (110) direction for which k, = k, = k, 
k, = 0; (c)the (111) direction for which k, = k, = 
k, E k. 

Results obtained under these special conditions 
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TABLE II TABLE III 

LISTING OF NONVANISHING MATRIX ELEMENTS FOR ENTRIES 
IN THE SECULAR DETERMINANTAL EQUATION FOR TiO, 

PERTAINING TO TITANIUM-OXYGEN INTERACTIONS’ 

LISTING OF NONVANISHING MATRIX ELEMENTS 

FOR ENTRIES IN THE SECULAR DETERMINANTAL 
EQUATION FOR TiO, PERTAINING TO 

OXYGEN-OXYGEN INTERACTIONS” 

Entries 
Notes and scheme for 
advancing of indices 

Entries 
Notes and scheme for 
advancement of entries 

<sclHls,> =~ 2p(C, + G + Cd 
(s,lHlx,> = 2ioS* Advance S, in step with 

I&J 
,‘x,lHls,) = 2iGS, Advance S, in step with 

<&I 
/x,lHlx,> = 2HC, t 21(Cz + C,) Advance all indices in 

step with A = x, y, or z; 
<h,lHlh.‘) = 0 if h # X 

:(z)lHlx,: = ‘xylHlx.> = 2iuSz Index on Si corres- 
ponds to and is to be 
advanced with letter h” 
missing from the 
((h)lH(h,‘) sequence; 
also, ((h)lHlh.) = 0 

(s.1 H/s,> = K + 4t(C, C2 
+C1C3+C2C3) -A 

<s,lH(x,) = 4imS1(C2 + C,) Advance all indices in 
step with Ix,) 

<xJHlx,> =p + 4rCI(C2 + C,) Advance all indices in 
+ 4tc*c, - x step with Ix,,> 

<x,,lHjy.> = -m4zS,& First index in step with 
~.&?I 
Second index in step 
with Iv.>; (<&I z IA,‘)) 

(x2 - y”lHls.> = 2/3c(C, - C,) 
(Z21HIS”) = E(2C3 - c, - C,) 
(x2 - y* 1 Hlx.) = V%ifS, (x2 - y21Hlz,) = 0 

ix* - y21H(y.) = -d\/5i&, 
(z*IH(x,> = -i&S1 
<z21fflya> = -its, 
<zzIHlz.> = 2ifS’, 

’ Si = sin(kia/2); Cj I cos(kja/2) where a is the lattice 
constant; subscripts (1,2, 3) correspond to (x, y. z). 

n S, = sin(kia/2); Cj = cos(k,a/2); subscripts (1, 2, 3) 
correspond to (x, y, z); a is the lattice constant. 

by standard manipulations are displayed in 
Tables IV-VI, using definitions listed in TableVII. 
The use of broken lines is explained below. 

Application of Results to TiO 

The above results have the advantage of being 
analytic and of being applicable to any solid 
crystallizing in the rocksalt structure, so long as 
the Wilson-Bloch model is applicable under the 
restrictions noted earlier. However, to determine 
the band structures for rocksalt crystals it is 
necessary to carry out numerical calculations of 
the various h(k). In principle this could be done 
by a priori calculations of the transfer integrals 
E,,,,,,(q). However, as is well known, meaningful 
calculations can only be carried out if the basis 
functions Ilj) are specified with a high degree of 
precision. In the absence of such information we 
adopted a curve-fitting procedure, by specializing 
to the case of TiO and by adjusting the E para- 
meters until an optimal fit with prior band 
structure calculations was attained. 

The case of TiO was chosen because of the 
detailed set of numerical calculations by Em and 
Switendick (13) against which the present work 
could be checked. Their paper likewise contains 
extensive tabulations of eigenvalues which are 
needed as input parameters in our work. More- 
over, their calculations have received experi- 
mental support. Various investigators using 
X-ray photoelectron spectroscopy (ESCA tech- 
niques) (14, 2.5) or soft X-ray emission (16-18) 
have found good agreement between their spectra 
and the density-of-states curves computed in 
Ref. (13). In agreement with the basic assumption 
underlying the theoretical treatment, the experi- 
ments indicate that up to one electron per Ti has 
been shifted from cationic to anionic states. The 
theoretical calculations (13) have received further 
confirmation from more recent calculations by 
Schoen and Denker (19) based on the APW-VCA 
approach. These latter computations have the 
advantage of making allowance for the existence 
of up to 15 at. y0 of vacancies in both sublattices 
to TiO. However, the numerical results are much 
less extensive than those of Ref. (13); moreover, 
the band structures arrived at in both cases are in 
substantial agreement. 

In their numerical work Em and Switendick 
(13) specified only a very limited number of 
eigenvalues derived from cationic p-states. 
Experience with our own calculations shows that 
this number is insufficient to permit a reliable 

16 
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TABLE IV 

SECULAR DETERMINANTAL EQUATION FOR TiO ALONG THE <lOO) DIRECTION IN RECIPROCAL SPACE’ 

(r*,) 
a+4ctsec-A=0 (A,') (IV. 1) 

(4 
~+6/3C+2y(2+C)-h=O (4) (IV.2) 

(IV.3) 

(4) 

(PC) (P.) (b4 

D + 4E(l+ C) 2H + 2Z(1 t C) 4i(K t L)S 
t 4FC- h 

Ip + 4r(l + C) -2ivS I = I 0 
1t4tc - h I I I I I a+4cC ! I I I t4e(l+C)-Xi 

(PC) (4 (&I (3.) b-&J 

Dt8ECt4F-h 8iAS -8iBS 2iGS 2HC t 41 
Ia+2/3(2+C) 46(1 - C) -2c(l - C) 2i@ I (IV.4) 
;+6yC-h 

I I 
I I I 7+45 2pe f a 
I 

2ioS j = 0 
I x(1 t2C)-h I (A,) I I I , ~+41(1 +2C)- h 8imS ; 
I I p+SrC ; 
I +41-X I 

a k, = k; k, = k, = 0; Eq. (IV.3) is doubly degenerate; S= sin(ka/f); C = cos(ku/2) 

calculation of bands derived primarily from these A&p,,,) to the eigenvalues X(k) cited by Em and 
cationic p-states. Moreover, it was found that Switendick at the points r, A, X, L, and Z in 
with the 38 available input values of h the system reciprocal space. In the above, the pm represent 
was not sufficiently overdetermined to permit newlabels(m=l,..., 24) for the distinct transfer 
reliable evaluation of the 36 distinct E para- integrals in Table VII. These pm were adjusted 
meters. We therefore elected to strike the first iteratively so as to minimize the quantity 
rows and columns from Eqs. (IV.3), (IV.4), (V.2)- 
(V.4), (VI. I), and (VI.2), for which thep, orbitals @ = ; ; v, @n ; Pm> - UkJ12 (4) 
serve as basis functions. The new determinants 
now comprise only the elements within the The requisite eigenvalues were then determined by 
broken bars of Tables IV-VI. This restricts the solving the subdeterminants of Table IV-VI using 
analysis to the construction of s- andp-like bands a procedure developed at MIT (21). The opti- 
of primarily anionic character and to s- and d-like mized pm values are listed in Table VII. 
bands of primarily cationic type. These 10 bands Repeated tests showed that the numerical 
are characterized by 24 transfer integrals listed results were sensibly independent of the choice 
in parts (1) and (2) of Table VII. 

The transfer integrals were determined by an 
of initial values, as long as all E,,,,(OOO) para- 
meters were assigned initial values which in sign 

optimization procedure developed by Marquardt and magnitude corresponded to appropriate 
(20). This method interpolates optimally between hb(0) values, and as long as the remaining 
Taylor’s series and the method of steepest descent. parameters were assigned initial values in the 
The numerical technique was employed to adjust range 10-l >pm > 10M2ry. Some of the end 
the parameters in the truncated secular deter- results were also checked independently by hand 
minantal equations of Tables IV-VI, until an calculations as follows: numerical values for a, 
optimal fit was obtained for the eigenvalues c, e were obtained from Eq. (IV.l) for the t29 
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TABLE V 

SECULAR DETERMINANTAL EQUATION FOR TiO ALONG THE <llO> DIRECTION IN RECIPROCAL SPACE“ 

(t**) 
a+4cC+4eC(1+C)+4gS2-A=0 

(PC) (PA 

D+8EC?-4FC=-h 2H + 41C 
Ip + 8rC 
I+ 4tc= - x 

h?) 

8iKS + 8iLSC 
-4ivS I I 

1 =o 
2a + 8cC I 

+ 8eC(l + C) 1 
-8gS-2h , 

(PC) 

120 + 8EC(l+ C) 
I+ 8FC + SMS* - 2h 

(4 

41/%4S(l + C) 

(P.) 

4HC + 41(1 + C) 1 
- 4iNS(l -- C) 

a+6/3C 2d3iE.S I 

t4yq*+ q-x j=O 

2p + 8rC(l + C) 1 
+8tC+SzS2-2h j 

(PA (SC) (4 (f24) (P.) (so) 

CL) 
(V.3) 

12 D + SEC(1 + C) --SiBS(1 + C) - 4iAS(l + C) 8iKSC 4HC 4iGS I 
8FC - 8MSZ 
2A 

- 4d%NS(l - C) -t 8iLS + 41(1 + C) 

+ 4<C(2 + C) -4X(1 - C) - 4/d? 4id 2p(l + 2C) j 
.A I I 

a + 4/x(+ + C) - 47s - 2ifS 26(1 - C) f 
+6$-h I =o 

a + 4cC* 4ivS 0 
I I I 

+8eC-h I 

2p + 8rC(l+ C) - SimS(1 + C) i 
+ 8tC - 8zS2 
- 2h 

1 (V.4) 

K + 41C(2 + C) j (2,) 
-A 

band along the (100) direction; v was found for 
S = 1 from Eq. (IV.3); p, r, t were calculated by 
combining (IV.3) with (IV.4). Similarly Eqs. 
(V.l) and (VI. 1) were employed to determine K 
and g. Attempts to determine CL, /3, and y through 
available h values for Eq. (IV.2) led to redun- 
dancies. However on the provisional assumption 
that z = 0, it was possible to determine CL, fi, and y 
solely from Eqs. (V.3) and (VI.2). Comparison 
with the results provided in Table VII showed 
that the hand calculations, based on a very 
limited number of specified Xs, agreed to within 
10 % with the machine calculations based on the 
entire set of available h values. It is thus plausible 

16* 

that the remaining 11 transfer integrals are also 
correctly determined. 

Numerical Results 

Numerical results displayed in Table VII are 
listed in rydbergs and refer to a zero of energy at 
E,, = -1.345 ry relative to vacuum. The off- 
diagonal transfer integrals are independent of this 
choice since for orthogonal 1 lj), (I;,/ H - E,,I ii) = 
(ljrIHIZj). The diagonal elements are all of the 
form (ljl H - XlZj), which shows that the (fjl HIZj) 
refer to the same Ed values as X does. 

For TiO, the transfer integrals range in absolute 
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TABLE VI 

SECULAR DETERMINANTAL EQUA~ON FOR TiO AU)NG THE (11 l> DIRECTION IN RECIPROCAL SPACE“ 

(PC) (SC) w (Pa) 

13 D i- 24EC= - 24iBSC 24iKSC 6HC 6iGS I 
- 12FC* - 24MS’ 
- 3h 

(PC) 

+ 24iLSC + 12IC 

+ 125c2 - 12ps 6io.S 
,A 

3a + 12cc2 12ivS 
+ 24eC2 - 24gS2 
- 3h 

3p + 24rC2 
+ 12tC2 - 24zS2 
- 3x 

02 A 62) (Pa) 

!D + 16EC2 - 8iKSC 8 &iASC 4HC + 8IC 
- 8FC= + 8MS2 - 8iLSC 
- 2x 

12a + 8cC2 -4v%s - 4ivS 
+ 16eC2 
+ 8gSz - 2h 

a + 6j3C2 2dSi.$S 
+ 6yC2 - A 

2p + 16rC’ 
8 I + 8tC2 + 8zS2 
I I - 2A 

= 0 

01) 

(VI.1) 

CM 

(VI.2) 

a k, = k,, = k, = k; Eq. (VI.2) is doubly degenerate; S = sin(ka/2); C = cos(ku/2). 

value from 0.941 to 0.00168 ry. Relative to 
E,, = -1.345 ry, the integrals E,,,,(OOO) tend to 
exceed all others in magnitude. The absolute 
values of the u-type and n-type integrals for 
cation-anion interactions tend to be comparable ; 
they generally fall above the range of values 
encountered for s-type interactions, or for cation- 
cation or for anion-anion transfer integrals in 
which (1 lO)-type interactions are involved. These 
general conclusions are quite reasonable; how- 
ever, the smaller numerical differences among 
members in each class are more difficult to 
interpret for two reasons: First, where the lobe 
of a rather diffuse wave function significantly 
overlaps with two lobes of opposite sign of another 
wave function, a cancellation effect may make 
the corresponding transfer integrals numerically 
smaller than a smaller degree of overlap would. 
Second, we are dealing with sets of orthogonalized 
atomic orbitals, which themselves are appro- 
priate linear combinations of the true atomic 

wave functions. The resulting delocalization is 
difficult to picture; the attempt to obtain detailed 
correlations between numerical values of the pm 
and pictures based on atomic wave functions is 
thus problematical. This matter is discussed in 
more detail by Mattheiss (22). 

The numerical values of the off-diagonal 
transfer integrals, relative to the differences in 
the values of diagonal elements they connect, 
furnish a rough measure of interaction between 
the two states. Two sets of calculations were 
carried out to obtain an indication of the extent 
of interaction. We first determined the dimen- 
sionlessratios I<l;,IHlZ,)l/l(I;,IHlr;) - (I,IHlZJl 
at the points r, L, 4(1/2 00), and .Z’(1/2 l/2 0) for 
all off-diagonal elements. These ratios ranged in 
value from 0.071 to 0.66; they are not small 
enough to permit any of the off-diagonal elements 
to be neglected. As a second criterion we con- 
sidered the ratio RM = 1 &,,,,(q) SJc,(q, k)l ‘/ 
Ih,,,.(k) - &,(&)I suggested by second order 
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TABLE VII 

LISTING, NUMERICAL VALUES, AND DEFINITIONS FOR 
TRANSFER INTEGRALS 

Designation Pm 

Energy 
(Rydbergs) 

I. Cation-cation interactions or 
anion-anion interactions not involving 

e 

g 
K 

m 

P 
r 

t 
z 

0.888 
0.00168 

-0.0344 
0.0110 
0.149 

-0.0206 
-0.0113 

0.0175 
0.643 

-0.0537 
0.0156 
0.0145 

-0.941 
0.00575 
0.0129 
0.107 
0.0134 

-0.0104 
0.00538 

2. Cation-anion interactions not 
involving Ti 4p states 

E,2,,(001) 0.0653 
&z,(OO1) ; -0.108 
Es,,UW P -0.0941 
Es,x,(1W CT -0.0764 
&,,,,(010) v -0.0745 

3. Interactions involving Ti 4p states 
E,,zzW 1) A Ex,,(1W H 
&x,(1 10) B %&w I 
&,x,w9 D &,x,(1 10) K 
E&1 10) E &,,x,W 1) L 
Ez,x,@l1) F ‘%,,,(110) M 
-&,,,(1W G Ec.xz-,z(Oll) N 

perturbation theory. To obtain approximate 
values of this ratio we substituted for the 2s the 
values at k = 0 (r point in reciprocal space), and 
for the S’s, the maximum possible values of the 
structure factors. Examination shows that in all 
but two cases this ratio remained in the range 
0.336 > RM > 0.0113; we verified that one may 
not neglect any of the listed off-diagonal elements, 
except possibly r and CL, for which RM lies in the 

10m3 2 RM > 10m4 range. Spot checks also re- 
vealed that it is not generally permissible to use 
second order perturbation theory for approxi- 
mate diagonalization of the secular determinants. 
For, we are attempting not just to duplicate 
specific eigenvalues, but also to reproduce 
reasonably accurately the more delicate variations 
of X with k within a given band. 

Using the optimized transfer integrals shown 
in Table VII, the band structure of TiO was now 
calculated from the secular determinantal equa- 
tions of Tables IV-VI along the (loo), (1 lo), and 
(111) directions. Results are depicted in Fig. 1 
and are labeled in the standard group theoretic 
notation. 

Comparison with the original APW calculation 
by Em and Switendick shows generally satis- 
factory agreement. There are two sets of differ- 
ences that are noteworthy: The uppermost X1 
and d, curves for the (111) and (100) directions 
in Fig. 1 terminate at points labeled L2’ and X,, 
respectively; whereas in Em and Switendick’s 
numerical work these two termini were found to 
have the symmetry L1 and X,’ corresponding to 
atomic Ti 4p states. The discrepancy arises because 
of our deliberate neglect of the 4p wave functions. 
Second, in regions enclosed by rectangular frames 
A and B, the energy bands differ significantly from 
those determined numerically in Ref. (23); the 
latter are indicated by broken lines. For region B 
the difference is in all probability attributable to 
our neglect of the Ti 4p wave functions. For 
region A deviations from the APW calculations 
are not understood but will be important because 
of the proximity of the Fermi level. Predictions 
of transport properties based on the APW and 
the present energy band structure schemes are 
thus likely to differ, and probably cannot be 
brought into better accord, unless one were to 
reduce the number of drastic approximations in 
the tight-binding approach. Since the results were 
fitted to the calculations by Em and Switendick it 
comes as no surprise that the two sets of band 
structures are quite similar, except as noted. By 
the same token, as was implicit in the work of 
Em and Switendick but is more clearly brought 
out in Table VII, the conclusions differ signifi- 
cantly, even in the qualitative sense from earlier 
results (23-26) based on much cruder models and 
methods of approach. In particular, two earlier 
viewpoints seem untenable: At least for the case 
of TiO it is not possible to break down the general 
10 x 10 secular determinantal equation into 
smaller subunits: on the basis of the criteria set 
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FIG. 1. Band structure of TiO as determined by the tight-binding approximation; parameters optimized for best fit 
to numerical data cited in Ref. (13). 

forth earlier, all off-diagonal elements are too 
large to permit such a step to be taken. In par- 
ticular, it is necessary to regard the next-nearest 
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